
The Right ConnectionsThe Right ConnectionsThe Right ConnectionsThe Right ConnectionsThe Right ConnectionsThe Right ConnectionsThe Right ConnectionsThe Right ConnectionsThe Right Connections
Damian Walker continues this
series with a look at Connect
4, by Ben Vaughan

Ben Vaughan's Connect 4 is the only
shareware offering in this otherwise
freeware line-up. Its graphics are designed
only for the Series 5, though it runs quite
happily in letterbox mode on the Series 7,
and presumably on the Geofox too.

This game uses a slightly larger than
usual board, at 8 slots by 8 rows, rather than
the more standardised 7 by 6. This is not a
disadvantage for most people, but those
practising for tournament play might have
preferred the standard board. I would have
liked to set Connect 4 against some of the
other programs in a tournament, but the lack
of a standard board size prevented this. It is
unfortunate that none of the games in this
line up have the option to change the board
size.

Its most interesting difference from the
other games is that, rather than offering
multiple levels of difficulty, it instead offers
four computer players with different styles
of play. This would have been even more
interesting had the program allowed the
computer to adopt one of the styles at
random, as not knowing what kind of player
you are up against would have added to the
replay value.

A characteristic of all Ben Vaughan's
games is the extensive use of sound.
Connect 4 is no exception, with speech
being used throughout the game. During
the game itself , for instance, a voice

announces the slot number into which
you've dropped a piece. It wasn't long
before I started to find the sound irritating,
though, and I eventually felt more like I was
travelling in a lift rather than playing a
board game. Thankfully, the sound can be
switched off at any time.

Despite its good presentation both in
sound and graphics, Connect 4 is quite a
simple program, only lightly loaded with
features. You have the option to decide
who goes first— strangely, it's only the
simplest of the programs that offer this
option. Help is offered in the form of a
single dialog box. That's not a criticism: the
game is straightforward enough, and widely
known, so a single dialog might be
suf ficient. There are no in-depth features
that need to be described.

On the technical side, Connect 4
doesn't score well. It doesn't respond to
operating system events like requests to
close, so it might be a nuisance if you've got
it running at the same time as trying to
make a backup. But the program is
otherwise reliable, and is still supported at
the time of writing, so it might be a good
option for owners of the Series 5.

In next month's article, I'll be looking
at the next game in the line up, Four In A
Line, which was originally by Purple Soft-
ware, and since then was taken over by
ZingMagic and released for free.

Before we can put a ball on the screen, we
need to load its bitmap images. The method
of doing this is similar to loading static
bitmaps. But instead of using gLOADBIT,
we need to use a procedure from the OPX,
BITMAPLOAD& , if those bitmaps are
intended for use in a sprite. The following
procedure, which should be added to the end
of the program, loads all of our ball bitmaps
and masks in one go:

PROC LoadBall:
ball&(1)=BITMAPLOAD&:

�

� ("\Bouncer\Ball1.mbm",0)
mask&(1)=BITMAPLOAD&:

�

� ("\Bouncer\Mask1.mbm",0)
ball&(2)=BITMAPLOAD&:

�

� ("\Bouncer\Ball2.mbm",0)
mask&(2)=BITMAPLOAD&:

�

� ("\Bouncer\Mask2.mbm",0)
ball&(3)=BITMAPLOAD&:

�

� ("\Bouncer\Ball3.mbm",0)
mask&(3)=BITMAPLOAD&:

�

� ("\Bouncer\Mask3.mbm",0)
ENDP

This procedure uses global array variables
ball& and mask& , whose elements have a
similar purpose to the floor% variable in
LoadFloor: they identify the individual
bitmaps we'll be using for the ball. We need
to declare these arrays in the main Bouncer
procedure, which you should modify to read
as shown here:

PROC Bouncer:
GLOBAL ball&(3),mask&(3)
DrawFloor:
LoadBall:
DO UNTIL GET=27

ENDP

If you translate and run this, no effect will be
apparent. The lack of any error message will
tell you that the program has no errors and
that the bitmaps were loaded successfully, but
we still can't see the ball. To rectify this, we
need to put these bitmaps together in a sprite,
and display that sprite on the screen. That is
the purpose of the following procedure,

Animating OPLAnimating OPLAnimating OPLAnimating OPLAnimating OPLAnimating OPLAnimating OPLAnimating OPLAnimating OPL
In this month's tutorial by Damian Walker, we'll load the ball
sprite and place it on the screen.

Welcome to a new issue of EPOC Entertain-
er. This month there is a treat for Osaris
owners, who often have reason to feel a bit
left out. The two running series also contin-

ue. As always, I welcome feedback on the
contents, so please do get in touch at the
email address below.

entertainer@snigfarp.karoo.co.uk

which you should add to the end of the
program:

PROC PlaceBall:
spritex%=gWIDTH/2-8
spritey%=gHEIGHT/2-8
sprite&=SPRITECREATE&:

�

� (1,spritex%,spritey%,0)
SPRITEAPPEND:(375000,ball&(1),

�

� mask&(1),1,0,0)
SPRITEAPPEND:(250000,ball&(2),

�

� mask&(2),1,1,1)
SPRITEAPPEND:(125000,ball&(3),

�

� mask&(3),1,2,2)
SPRITEAPPEND:(250000,ball&(2),

�

� mask&(2),1,1,1)
SPRITEDRAW:

ENDP

The global variables spritex% and spritey%
are used to find the centre of the screen. The
offset of - 8 is used to take into account the
fact that the sprite's size is 16×16 pixels. The
co- ordinates of sprites, like static bitmaps, are
referred to by their top- left corner, so to
centre a sprite around any particular co-
ordinate, you need to subtract half its height
and width from that position.

The SPRITECREATE& procedure
brings our sprite into existence. The first
parameter is the drawable onto which we
want the sprite to appear; you'll remember
that 1 is the ID of the background screen.
The next two parameters specify where we
want the sprite to appear; this will be in the
centre of the screen as we've already
calculated. The final parameter allows us to
make the sprite f lash; we don't want this, so
the parameter is zero. The global sprite&
variable is a unique ID for the sprite.

At this point, the sprite is still invisible,
as we've not said what we want it to look like.
That's what the following four lines are for.
Each call to the SPRITEAPPEND procedure
defines a single frame of animation. The first

parameter is the number of microseconds for
which the sprite will appear. The next two
parameters are the ID of the bitmap and mask
we want to use for this frame. The next
parameter, 1, specifies that we want to use the
mask to blank out pixels, as we did in our
Temp procedure. The f inal parameters
specify an offset for this frame. You'll
remember that the second and third frames
that we drew in Sketch are each smaller than
the frame before; we therefore have to
modify the offset in order that the ball stays
centred as it bounces. If you find this
explanation unclear, try changing these to 0,0
in every case.

The last line, a call to the
SPRITEDRAW procedure, is what actually
makes the sprite visible. Before any of this
will work, you need to make the following
modifications to the Bouncer procedure, to
declare the new variables and to call this new
procedure:

PROC Bouncer:
GLOBAL ball&(3),mask&(3)
GLOBAL sprite&,spritex%,

�

� spritey%
DrawFloor:
LoadBall:
PlaceBall:
DO UNTIL GET=27

ENDP

When you run this program you'll see that the
ball is automatically bouncing up and down.
No further action is needed on the part of
your program to make this happen. In fact, as
you watch the ball bounce, all your program
is doing is waiting for you to press the ESC
key.

In the next issue we'll make the ball
move from its central position and bounce
around the screen.

The Oregon TrailThe Oregon TrailThe Oregon TrailThe Oregon TrailThe Oregon TrailThe Oregon TrailThe Oregon TrailThe Oregon TrailThe Oregon Trail
A closer look at gaming on the
Oregon Scientific Osaris, by
Damian Walker

When developers release games for EPOC32,
one machine that is often forgotten is the Os-
aris. It's a fairly solid machine that compares
well with the more successful Revo: it has the
same 8MB RAM, plus a backlight and a CF
slot. What is it that makes it undesirable as a
target platform?

There are two probable reasons: its lack
of sales compared to the Revo, and its
320×200 screen—the lowest resolution of all
EPOC32 machines. There is no reason why
this resolution should be an impediment,
though. A lot of games on the PC worked ad-
mirably at this resolution, and games are now
developed for smart phones with smaller res-
olutions still.

There are a number of EPOC32 game
developers who have agreed on this point.
About 50 games of the 300 I'm aware of sup-
port the Osaris screen, either by design or ac-
cidentally. Some programmers have made a
conscious effort, tailoring their programs to
adapt to the smaller screen. Examples of this
include Dice5, V-Rally and my own Senet on

the move. This approach can take some ef-
fort, though, with the need to design special
on-screen graphics to fit the Osaris screen.

Other developers have gone down a
more elegant route. Some games re-size
themselves automatically to whatever size the
screen happens to be. On occasion this does-
n't quite work—sometimes there is simply
too much on the screen to cram into a small
resolution, and while developers may have
kept the Revo in mind, the Osaris has been
overlooked. But in many cases, like Encore,
No Man's Land, and Shut the Box, the results
are very good indeed.

Occasionally some minor screen glitches
occur, like slightly misplaced scroll bars in
SimCity, but these don't affect the ability to
enjoy the game on the Osaris. A special men-
tion must be made for the games of
PsionGames and Ten Dan, who have man-
aged to make their games scale flawlessly to
fit everything from the Osaris to the Series 7,
albeit in monochrome on all platforms.

The Osaris is therefore not so bad a ma-
chine for games as you might imagine. Its
Compact Flash support, in contrast to the
Revo, allows you to partake of these frivolous
pursuits without taking up precious RAM,
and the backlight lets you play in low light
conditions. Future editions of EPOC Enter-
tainer will therefore be keeping a special eye
on the Osaris.

V-Rally, by TomTom. Invasion, by Thomas Ashton.

